
 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.

 Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL
DATA FILE AND DATABASE HANDLING

OPL

D A T A B A S E I N F O R M A T I O N

CONTENTS

DATA FILE HANDLING ..1
FILES, RECORDS AND FIELDS .. 2

CREATING A DATA FILE... 2
LOGICAL NAMES.. 2
FIELDS ... 2

OPENING A FILE .. 3
SAVING RECORDS .. 4

THE NUMBER OF RECORDS .. 5
HOW THE VALUES ARE SAVED.. 5

MOVING FROM RECORD TO RECORD... 6
DELETING A RECORD .. 6

FINDING A RECORD ... 6
WILDCARDS ... 6
MORE CONTROLLED FINDING ... 7

CHANGING/CLOSING THE CURRENT FILE ... 8
EXAMPLE - COPIES SELECTED RECORDS FROM ONE FILE TO ANOTHER 8
CLOSING A DATA FILE.. 8
KEEPING DATA FILES COMPRESSED .. 9

SERIES 3C AND SIENA DATA FILES AND THE DATA APPLICATION 9

SERIES 5 DATABASE HANDLING .. 11
THE SERIES 5 DATABASE MODEL ... 12

DATABASES, TABLES, VIEWS, FIELDS AND FIELD HANDLES .. 12
CREATING DATABASES AND TABLES ... 12

LOGICAL NAMES.. 12
FIELDS ... 13

OPENING DATABASES AND TABLES .. 13
TRANSACTIONS .. 13
RECORD POSITION .. 14
SAVING RECORDS .. 14

THE NUMBER OF RECORDS .. 14
CLOSING VIEWS AND DATABASES .. 14
INDEXES ... 14
COMPACTION... 15
OPENING A DATABASE CREATED BY THE DATA APPLICATION ... 15

INDEX ... 16

OPL

D A T A F I L E H A N D L I N G 1

DATA FILE HANDLING

You can use OPL to create data files (databases) like those used by the Data application. You
can store any kind of information in a data file, and retrieve it for display, editing or calcula-
tions.

This section covers:

••••• Creating data files

••••• Adding and editing records

••••• Searching records

••••• Using a data file both in OPL and in the Data application

The Series 5 and the Series 3c database models differ quite substantially. However, the Series 3c
method of database programming (except for some removed keywords as indicated) is com-
pletely understood by the Series 5 model and any existing code will not have to change. How-
ever, it is very strongly recommended that on the Series 5 you use the new keywords INSERT,
MODIFY, PUT and CANCEL, along with bookmarks and transactions, rather than using
APPEND, UPDATE, POS and POSITION.

If you are using the Series 5, it is recommended that you read this section for a description of
simple database use, and then the following section of this document which refers specifically to
features available on the Series 5.

OPL

D A T A F I L E H A N D L I N G 2

FILES, RECORDS AND FIELDS
Data files (or databases) are made up of records which contain data in each of their fields. For example, in a
database of names and addresses, each record might have a name field, a telephone number field, and separate
fields for each line of the address.

In OPL you can:

• Create a new file with CREATE, or open an existing file with OPEN, and copy, delete and rename files with
COPY, DELETE and RENAME.

• Add a new record with APPEND, change an existing one with UPDATE, and remove a record with
ERASE.

• Fill in a field by assigning a value to a field variable.

CREATING A DATA FILE
Use the CREATE command like this:

CREATE filename$,logical name,field1,field2,...

For example:

CREATE “clients”,B,nm$,tel$,ad1$,ad2$,ad3$

creates a data file called clients .

The file name is a string, so remember to put quote marks around it. You can also assign the name string to a
string variable (for example fil$=“clients”) and then use the variable name as the argument - CREATE
fil$,A,field1,field2 .

LOGICAL NAMES

➎ You can have up to 26 data files open at a time. Each of these must have a logical name: A to Z.

➌ You can have up to 4 data files open at a time. Each of these must have a logical name: A, B, C or D.

The logical name lets you refer to this file without having to keep using the full file name.

A different logical name must be used for each data file opened - e.g. one called A, one called B and one called
C. A file does not have to be opened with the same logical name as the last time it was opened. When a file is
closed, its logical name is freed for use by another file.

FIELDS

field1 , field2 ,... are the field names - up to 32 in any record. These are like variables, so - use % & or $ to
make the appropriate types of fields for your data. You cannot use arrays. Do not specify the maximum length of
strings that the string fields can handle. The length is automatically set at 255 characters.

Field names may be up to 8 characters long, including any qualifier like &.

When referring to fields, add the logical file name to the front of the field name, to specify which opened file the
fields belong to. Separate the two by a dot. For example, A.name$ is the name$ field of the file with logical
name A, and C.age% is the age% field of the file with logical name C.

OPL

D A T A F I L E H A N D L I N G 3

The values of all the fields are 0 or null to start with. You can see this if you run this example program:

PROC creatfil:
CREATE “example”,A,int%,long&,float,str$
PRINT “integer=”;a.int%
PRINT “long=”;a.long&
PRINT “float=”;a.float
PRINT “string=”;a.str$
CLOSE
GET

ENDP

OPENING A FILE
When you first CREATE a data file it is automatically open, but it closes again when the program ends. If a file
already exists, trying to CREATE it again will give an error - so if you ran the procedure creatfil: a
second time you would get an error. To open an existing file, use the OPEN command.

OPEN works in the same way as the CREATE command. For example:

OPEN “clients”,B,nm$,tel$,ad1$,ad2$,ad3$

• You must use the same filename as when you first created it.

• You must include in the OPEN command each of the fields you intend to alter or read. You can omit fields
from the end of the list; you cannot miss one out from the middle of the list, for example nm$,,ad1$ would
generate an error, whereas nm$,tel$,ad1$ would be fine. They must remain the same type of field, but you
can change their names. So a file created with fields name$,age% could later be opened with the fields
a$,x%.

• You must give the file a logical name. See ‘Logical names’ above. You can’t have two files open simultane-
ously with the same logical name, so when opening the files, remember which logical names you have
already used.

You might make a new module, and type these two procedures into it:

PROC openfile:
IF NOT EXIST(“example”)

CREATE “example”,A,int%,lng&,fp,str$
ELSE

OPEN “example”,A,int%,lng&,fp,str$
ENDIF
PRINT “Current values:”
show:
PRINT “Assigning values”
A.int%=1
A.lng&=&2**20 REM the 1st & avoids integer overflow
A.fp=SIN(PI/6)
PRINT “Give a value for the string:”
INPUT A.str$
PRINT “New values:”
show:

ENDP

OPL

D A T A F I L E H A N D L I N G 4

PROC show:
PRINT “integer=”;A.int%
PRINT “long=”;A.lng&
PRINT “float=”;A.fp
PRINT “string=”;A.str$
GET

ENDP

NOTES

OPENING/CREATING THE FILE

The IF...ENDIF checks to see if the file already exists, using the EXIST function. If it does, the file is opened; if
it doesn’t, the file is created.

GIVING VALUES TO THE FIELDS

The fields can be assigned values just like variables. The field name must be used with the logical file name like
this: A.f%=1 or INPUT A.f$.

If you try to give the wrong type of value to a field (for example “Davis ” to f%) an error message will be
displayed.

You can access the fields from other procedures, just like global variables. Here the called procedure show:
displays the values of the fields.

FIELD NAMES

You must know the type of each field, and you must give each a separate name - you cannot refer to the fields in
any indexed way, e.g. as an array.

OPENING A FILE FOR SHARING

The OPENR command works in exactly the same way as OPEN, except that the file cannot be written to (with
UPDATE or APPEND), only read. However, more than one running program can then look at the file at the
same time.

SAVING RECORDS
The last example procedure did not actually save the field values as a record to a file. To do this you need to use
the APPEND command. This program, for example, allows you to add records to the example data file:

PROC count:
LOCAL reply%
OPEN “example”,A,f%,f&,f,f$
DO

CLS
AT 20,1 :PRINT “Record count=”;COUNT
AT 9,5 :PRINT “(A)dd a record”
AT 9,7 :PRINT “(Q)uit”
reply%=GET
IF reply%=%q OR reply%=%Q

BREAK
ELSEIF reply%=%A OR reply%=%a

OPL

D A T A F I L E H A N D L I N G 5

add:
ELSE

BEEP 16,250
ENDIF

UNTIL 0
ENDP

PROC add:
CLS
PRINT “Enter integer field:”;
INPUT A.f%
PRINT “Enter long integer field:”;
INPUT A.f&
PRINT “Enter numeric field:”;
INPUT A.f
PRINT “Enter string field:”;
INPUT A.f$
APPEND

ENDP

BEEP

The BEEP command makes a beep of varying pitch and length:

BEEP duration%,pitch%

The duration is measured in 1/32 of a second, so duration%=32 would give a beep a second long. Try
pitch%=50 for a high beep, or 500 for a low beep.

THE NUMBER OF RECORDS

The COUNT function returns the number of records in the file. If you use it just after creating a database, it will
return 0. As you add records the count increases.

HOW THE VALUES ARE SAVED

Use the APPEND command to save a new record. This has no arguments. The values assigned to A.f% , A.f& ,
A.f and A.f$ are added as a new record to the end of the example data file. If you only give values to some
of the fields, not all, you won’t see any error message. If the fields happen to have values, these will be used;
otherwise - null strings (“”) will be given to string fields, and zero to numeric fields.

New field values are always added to the end of the current data file - as the last record in the file (if the file
is a new one, it will also be the first record).

At any time while a data file is open, the field names currently in use can be used like any other variable - for
example, in a PRINT statement, or a string or numeric expression.

APPEND AND UPDATE

APPEND adds the current field values to the end of the file as a new record, whereas UPDATE deletes the
current record and adds the current field values to the end of the file as a new record.

OPL

D A T A F I L E H A N D L I N G 6

MOVING FROM RECORD TO RECORD
When you open or create a file, the first record in the file is current. To read, edit, or erase another record, you
must make that record current - that is, move to it. Only one record is current at a time. To change the current
record, use one of these commands:

• POSITION ‘moves to’ a particular record, setting the field variables to the values in that record. For exam-
ple, the instruction POSITION 3 makes record 3 the current record. The first record is record 1.

• You can find the current record number by using the POS function, which returns the number of the current
record.

• FIRST moves to the first record in a file.

• NEXT moves to the following record in a file. If the end of the file is passed, NEXT does not report an
error, but the current record is a new, empty record. This case can be tested for with the EOF function.

• BACK moves to the previous record in the file. If the current record is the first record in the file then that
first record stays current.

• LAST moves to the last record in the file.

DELETING A RECORD

ERASE deletes the current record in the current file.

The next record is then current. If the erased record was the last record in a file, then following this command
the current record will be empty and EOF will return true.

FINDING A RECORD
FIND makes current the next record which has a field matching your search string. Capitals and lower-case
letters match. For example:

r%=FIND(“Brown”)

would select the first record containing a string field with the value “Brown”, “brown” or “BROWN”, etc. The
number of that record is returned, in this case to the variable r%. If the number returned is zero, no matching
field was found. Any other number means that a match was found.

The search includes the current record. So after finding a matching record, you need to use NEXT before you
can continue searching through the following records.

FIND(“Brown”) would not find a field “Mr Brown”. To find this, use wildcards, as explained below.

You can only search string fields, not number fields. For example, if you assigned the value 71 to the field
a%, you could not find this with FIND. But if you assigned the value “71” to a$, you could find this.

WILDCARDS

r%=FIND(“*Brown*”) would make current the next record containing a string field in which Brown
occurred - for example, the fields “MR BROWN”, “Brown A.R.” and “Browns Plumbing” would be matched.
The wildcards you can use are:

? matches any one character

* matches any number of characters.

OPL

D A T A F I L E H A N D L I N G 7

Once you’ve found a matching record, you might display it on the screen, erase it or edit it. For example, to
display all the records containing “BROWN”:

FIRST
WHILE FIND(“*BROWN*”)

PRINT a.name$,a.phone$
NEXT
GET

ENDWH

MORE CONTROLLED FINDING

FINDFIELD, like FIND, finds a string, makes the record with this string the current record, and returns the
number of this record. However you can also use it to do case-dependent searching, to search backwards through
the file, to search from the first record (forwards) or from the last record (backwards), and to search in one or
more fields.

f%=FINDFIELD(a$,start%,no%,flag%)

searches for the string a$ in no% fields in each record, starting at the field with number start% (1 is the
number of the first field). start% and no% may refer to string fields only and other types will be ignored. The
flag% argument specifies the type of search as explained below. If you want to search in all fields, use 1 as the
second argument and for the third argument use the number of fields you used in the OPEN/CREATE
command.

flag% should be specified as follows:

search direction flag%

backwards from current record 0

forwards from current record 1

backwards from end of file 2

forwards from start of file 3

➎ Constants for these flags are supplied in Const.oph. See the ‘Calling Procedures’ section of the ‘Basics.pdf’

document for details of how to use this file and see Appendix E in the ‘Appends.pdf’ document for a
listing of it.

Add 16 to the value of flag% given above to make the search case-dependent, where case-dependent means
that the record will exactly match the search string in case as well as characters. Otherwise the search will be
case-independent which means that upper case and lower case characters will match.

For example, if the following OPEN (or CREATE) statement had been used:

OPEN “clients”,B,nm$,tel$,ad1$,ad2$,ad3$

then the command

r%=FINDFIELD(“*Brown*”,1,3,16)

will search the nm$, tel$ and ad1$ fields of each record for strings containing “Brown” searching case-
dependently backwards from the current record.

If you find a matching record and then you want to search again from this record, you must first use NEXT or
BACK (according to the direction in which you are searching) to move past the record you have just found,
otherwise the search will find the same match in the current record again.

OPL

D A T A F I L E H A N D L I N G 8

CHANGING/CLOSING THE CURRENT FILE
Immediately after a file has been created or opened, it is automatically current. This means that the APPEND or
UPDATE commands save records to this file, and the record-position commands (explained below) move
around this file. You can still use the fields of other open files, for example A.field1=B.field2

USE makes current one of the other opened files. For example USE B selects the file with the logical name B
(as specified in the OPEN or CREATE command which opened it).

If you attempt to USE a file which has not yet been opened or created, an error is reported.

In this procedure, the EOF function checks whether you are at the end of the current data file — that is, whether
you’ve gone past the last record. You can use EOF in the test condition of a loop UNTIL EOF or WHILE NOT
EOF in order to carry out a set of actions on all the records in a file.

EXAMPLE - COPIES SELECTED RECORDS FROM ONE FILE TO ANOTHER

PROC copyrec:
OPEN “example”,A,f%,f&,f,f$
TRAP DELETE “temp” REM If file doesn’t exist, ignore error
CREATE “temp”,B,f%,f&,f,f$
PRINT “Copying EXAMPLE to TEMP”
USE A REM the EXAMPLE file
DO

IF a.f%>30 and a.f<3.1415
b.f%=a.f%
b.f&=a.f&
b.f=a.f
b.f$=“Selective copy”
USE B REM the TEMP file
APPEND
USE A
ENDIF
NEXT

UNTIL EOF REM until End Of File
CLOSE REM closes A; B becomes current
CLOSE REM closes B

ENDP

This example uses the DELETE command to delete any temp file which may exist, before making it afresh.
Normally, if there were no temp file and you tried to delete it, an error would be generated. However, this
example uses TRAP with the DELETE command. TRAP followed by a command means “if an error occurs in
the command, carry on regardless”. The error value can then be found using ERR.

There are more details of ERR and TRAP in the ‘Errors.pdf’ document.

CLOSING A DATA FILE

You should always ‘close’ a data file (with the CLOSE command) when you have finished using it. Data files
close automatically when programs end.

➎ You can use up to 26 logical names (files or views — see the ‘Series 5 Database Handling’ section of this

document) at a time - if you are using 26 logical names and you want to use another one, you must close
one of the open files or views first. CLOSE closes the file or view referred to by the current logical name.

OPL

D A T A F I L E H A N D L I N G 9

➌ You can only have 4 files open at a time - if you already have 4 files open and you want to access another

one, you must close one of the open files first. CLOSE closes the current file.

KEEPING DATA FILES COMPRESSED

When you change or delete records in a data file, the space taken by the old information is not automatically
recovered.

➎ By default, the space is not recovered when you close the file, unless you have used the SETFLAGS

command to enable auto-compaction on closing a file.

➌ By default, the space is recovered when you close the file, provided it is on ‘Internal drive’ or on a RAM

SSD (i.e. it is not on a Flash SSD).

Closing a very large file which contains changed or deleted records can be slow when compression is enabled, as
the whole file beyond each old record needs copying down, each time.

➌ You can prevent data file compression on the Series 3c if you wish, with these two lines:

p%=PEEKW($1c)+$1e

POKEW p%,PEEKW(p%) or 1

(Use any suitable integer variable for p%.) Files used by the current program will now not compress when
they close.

Use these two lines to re-enable auto-compression:

p%=PEEKW($1c)+$1e

POKEW p%,PEEKW(p%) and $fffe

Warning: be careful to enter these lines exactly as shown. These examples work by setting a system
configuration flag.

If you have closed a file without compression, you can recover the space by using the COMPRESS
command to create a new, compressed version of the file. COMPRESS “dat” “new” , for example,
creates a file called new which is a compressed version of dat , with the space which was taken up by old
information now recovered. (You have to use COMPRESS to compress data files which are kept on a
Flash SSD.)

➎ On the Series 5, you can use the COMPACT command when the database is closed. See the ‘Series 5

Database Handling’ section of this document.

SERIES 3C AND SIENA DATA FILES AND THE DATA APPLICATION
The files you use with the Data application (listed under the Data icon in the System screen) often called
databases or database files - are also just data files.

Data files created by the Data application can be viewed in OPL, and vice versa.

In OPL : to open a data file made by the Data application, begin its name with \DAT\ , and end it with .DBF .
For example, to open the file called data which the Data application normally uses:

OPEN “\dat\data.dbf”,A,a$,b$,c$,d$...

OPL

D A T A F I L E H A N D L I N G 10

Restrictions:

• You can use up to 32 field variables, all strings. It is possible for records to contain more than 32 fields, but
these fields cannot be accessed by OPL. It’s safe to change such a record and use UPDATE, though, as the
extra fields will remain unchanged.

• The maximum record length in OPL is 1022 characters. You will see a ‘Record too large’ error (-43) if your
program tries to open a file which contains a record longer than this.

• The Data application breaks up long records (over 255 characters) when storing them. They would appear
as separate records to OPL.

In the Data application: to examine an OPL data file, press the Data button, select ‘Open file’ from the ‘File’
menu and Control+Tab to type in a file name, and then type the name with \OPD\ on the front and .ODB at the
end for example:

\opd\example.odb

Restrictions:

• All of the fields must be string fields.

• You can have up to a maximum of 32 fields, as specified in the CREATE command. If you view an OPL
data file with the Data application, and add more lines to records than the number of fields specified in the
original CREATE command, you will get an error if you subsequently try to access these additional fields in
OPL.

In both cases, you are using a more complete file specification. There is more about file specifications in the
‘Advanced.pdf’ document.

➎ For details of using Data application files in OPL on the Series 5, see the next section of this document.

OPL

S E R I E S 5 D A T A B A S E H A N D L I N G 11

SERIES 5 DATABASE HANDLING

The Series 5 uses the relational database management system (DBMS) of EPOC32 which sup-
ports SQL (Standard Query Language).

Apart from the removed keywords RECSIZE, COMPRESS and ODBINFO, the Series 3c
methods of database programming are completely understood by the Series 5 model and exist-
ing code will not have to change. However, it is very strongly recommended that you use IN-
SERT, MODIFY, PUT and CANCEL along with bookmarks and transactions, rather than using
APPEND, UPDATE, POS and POSITION.

See also the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’ document for some more detailed
description of the use of new and changed database commands and ‘Database OPX’ in the
‘OPX.pdf’ document.

OPL

S E R I E S 5 D A T A B A S E H A N D L I N G 12

THE SERIES 5 DATABASE MODEL
As has been stressed previously, it is very strongly recommended that you use this Series 5 specific model on the
Series 5, despite the fact that the data file handling methods of the Series 3c may still be used on the Series 5.
The reasons for this are as follows:

• the new keywords closely reflect the underlying EPOC32 database model supplied by DBMS. They are
therefore more efficient than the Series 3c keywords on the Series 5.

• to emulate the Series 3c behaviour, APPEND has to create an intermediate copy of the record which is
erased on completion of the keyword. This ensures the rather strange requirement that the field values of the
previous APPEND are used as the initial values for the current APPEND. This can make a database grow
far larger than on the Series 3c. You can, however, use COMPACT or SETFLAGS to remove erased
records from a database.

• without transactions, writing a large number of records to a database is far slower on the Series 5 than on
the Series 3c. However, with transactions it is far faster.

• the Series 5 model is superior.

DATABASES, TABLES, VIEWS, FIELDS AND FIELD HANDLES

To describe the new model it is necessary to expand upon the terminology that was used in the previous section.

A Series 3c data file corresponds more or less to a single table in a DBMS database file. A database can contain one
or more tables. A table, like a data file on the Series 3c, contains records which are made up of fields. Unlike the
Series 3c, however, the field names as well as the table names are stored in the database.

CREATING DATABASES AND TABLES

With the statement:

CREATE “datafile”,A,f1%,f2%

as described in the previous section, the Series 5 creates a database called datafile and a table with the
default name Table1 would be added to it. The field names are derived from the f1% and f2% which are
called field handles. The type of the field, as always, is defined by these handles.

With the Series 5 it is also possible to use, for example,

CREATE “people FIELDS name, number TO phoneBook”,A,n$,number$

This will create a table called phoneBook in the database called people , creating the database too if it does
not exist. The table will have fields name and number , whose respective types are specified by the field
handles n$ and number$, both strings in this example.

Note that CREATE creates a table. An error is raised if the table already exists in the database. DBMS does not
allow the database to be open when a table (or an index: see ‘Database OPX’ in the ‘OPX.pdf’ document) is
created in it, so you should first close the database, i.e. close any tables previously opened in it, before using
CREATE.

LOGICAL NAMES

You can have up to 26 views on tables open at a time on the Series 5. Each of these must have a logical name: A
to Z (the Series 3c only supported 4 files open at one time).

OPL

S E R I E S 5 D A T A B A S E H A N D L I N G 13

FIELDS

On the Series 5, field names may be up to 32 characters long, including any qualifier like &.

OPENING DATABASES AND TABLES
With the Series 3c OPEN statement,

OPEN “datafile”,A,f1%,f2%

the Series 5 would open the default table Table1 and provide access to as many fields as there are handles
supplied.

On the Series 5, it is also possible to open multiple views on a table simultaneously and to specify which fields
are to be available in a view, e.g.

OPEN “people SELECT name FROM phoneBook”,A,n$

This view gives you access to just the name field from the phoneBook table.

The string from SELECT onwards in the OPEN statement forms an SQL query which is passed straight on to the
underlying EPOC32 DBMS. The SQL command-set is specified in Appendix F in the ‘Appends.pdf’ document.

A more advanced view, ordered by an index (described later), would be opened as follows,

OPEN “people SELECT name,number FROM phoneBook ORDER BY name ASC, number
DESC”,A,n$,num%

This would open a view with name fields in ascending alphabetical order and if any names were the same then
the number field would be used to order these records in descending numerical order.

TRANSACTIONS

A set of related records should be committed only on successfully PUTting the last one. Otherwise all new
records may be discarded using ROLLBACK. This ensures the atomicity of the whole transaction.

Transactions allow changes to a database to be committed in stages. It is necessary to use transactions in
database operations to achieve reasonable speeds.

Transactions are a truly fundamental part of the DBMS model, so much so that without the use of transactions
you will find that writing to a DBMS database is in fact slower than the equivalent operations in on the Series
3c. With transactions however, the Series 5 database handling is far faster than that of the Series 3c.

A transaction is carried out using the following commands:

• BEGINTRANS begins a transaction on the current database. Once a transaction has been started on a view
(or table) then all database keywords will function as usual, but the changes to that view will not be made
until COMMITTRANS is used.

• COMMITTRANS commits the transaction of the current view.

• ROLLBACK cancels the current transaction on the current view. Changes made to the database with respect
to this particular view since BEGINTRANS was called will be discarded.

• INTRANS finds out whether the current view is in a transaction.

OPL

S E R I E S 5 D A T A B A S E H A N D L I N G 14

RECORD POSITION

In the DBMS model, as with most modern relational database models, absolute record position does not have much
significance.

Bookmarks can be assigned to particular records to provide fast record access and should be used in preference to
POS and POSITION when opening views using the Series 5 OPEN...SELECT.. or CREATE ... FIELDS...
statements. POS and POSITION can be used safely on tables opened or created using a Series 3c-style OPEN or
CREATE statement. However, POS and POSITION should not be used in conjunction with bookmarks as bookmarks
can cause these keywords, kept mainly for Series 3c compatibility, to become inaccurate. Note that if bookmarks
are used in conjunction with POS and POSITION accuracy can be restored by using FIRST or LAST on the current
view.

The new commands provided for the use of bookmarks are as follows: BOOKMARK puts a bookmark at the
current record of the current database view. The value returned can be passed to GOTOMARK to make the record
current again and to KILLMARK to delete the bookmark.

SAVING RECORDS

When using the Series 5 extensions to CREATE and OPEN, you should also use the new MODIFY, INSERT, PUT
and CANCEL keywords in preference to the APPEND and UPDATE Series 3c commands. APPEND and UPDATE
will still work as expected, but do not naturally fit in the DBMS model.

• MODIFY allows records to be changed without being moved to the end of the set (as UPDATE still does).

• Instead of copying the current record to the end of the set as APPEND does, INSERT appends a new record
to the end of the set with numeric fields set to 0 and string fields empty if values have not been assigned to
them.

• PUT marks the end of a database’s INSERT or MODIFY phase and makes the changes permanent.

• CANCEL marks the end of a database’s INSERT or MODIFY phase and discards the changes made during
that phase.

THE NUMBER OF RECORDS

The COUNT function returns the number of records in the file. If you try to count the number of records between
assignment and APPEND/UPDATE or between MODIFY/INSERT and PUT an ‘Incompatible update mode’ error
will be raised.

CLOSING VIEWS AND DATABASES

CLOSE closes the current view on a database. If there are no other views open on the database then the database
itself will be closed.

INDEXES

Indexes can be constructed on a table using several fields as keys. These indexes are subsequently used to provide
major speed improvements when opening a table or views on them.

Further database functionality is provided in the Database OPX, discussed in the ‘‘OPX.pdf’ document.

OPL

S E R I E S 5 D A T A B A S E H A N D L I N G 15

COMPACTION

COMPACT replaces the COMPRESS command on the Series 5. This compacts a database, rewriting the file in
place without any removed or deleted data. All views on the database and the hence the file itself should be
closed before calling this command. Compaction may also be done automatically on closing a file by setting the
automatic compaction flag using SETFLAGS. See the ‘Alphabetic Listing’ section of the ‘Glossary.pdf’
document for full details of this.

OPENING A DATABASE CREATED BY THE DATA APPLICATION
It is currently not possible to open an OPL database from the Data application. You can however open a file
created by the Data application in an OPL program. The file is opened for reading only, because if it were
written to, OPL would have to discard all the formatting characters and prevent the Data application from
reopening the file subsequently. An OPL program can create a new OPL database and copy the Data application
records into it if necessary.

To open a Data application database that has one string field which you need to access, you could use:

OPEN “file”,a,a$

Types not supported by OPL will be ignored. Note that integer fields in the Data application correspond to long
integer fields in OPL: the Data application does not support (16-bit) integer fields. The types and order of the
OPL field handles must match the fields in the Data file. For example, if the data file Data2 contains:

1. long integer field

2. date/time field (ignored by OPL)

3. string field

4. floating-point number field

you could access the fields supported by OPL using:

OPEN “Data2”,A, f1&,f2$,f3

It would be better, however, to use the SQL SELECT clause to name the required Data file fields explicitly. For
this to be possible it is necessary to use table name and the same field names as are used by Data. All Data files
have a single table called Table1 . The fields (referred to internally as columns in Data) are named ColA1 ,
ColA2 , etc.

So, with the field types from the previous example, the Data file could be opened using:

OPEN “Data2 SELECT ColA1,ColA3,ColA4 FROM Table1”,a,f1&,f2$,f3

OPL

I N D E X 16

INDEX

A

APPEND 5

B

BACK 6
BEEP 5
BEGINTRANS 13
BOOKMARK 14

C

CANCEL 14
CLOSE 8, 14
COMMITTRANS 13
COMPACT 15
COMPRESS 9
COUNT 5, 14
CREATE 2, 12

D

Data application
and OPL data files 9
opening databases in OPL 15

data file
appending 4
checking for EOF 8
closing 8
compressing 9
creating 2
field names 2, 4
finding a record 6
logical names 2
moving between records 6
opening 3
structure 2
updating 5
using a different file 8

databases 12
compacting 15
creating 12
opening 13
transactions 13

DELETE 8

E

end of file, in a data file 8

EOF 8
ERASE 6

F

field handles 12
fields

as keys 14
in data files 2
input to 4
types 2

FIND 6
FINDFIELD 7
FIRST 6

G

GOTOMARK 14

I

‘Incompatible update mode’ 14
input

to data fields 4
INSERT 14
INTRANS 13

K

KILLMARK 14

L

LAST 6
logical name

of data file 2
logical names 12

M

MODIFY 14

N

NEXT 6

O

OPEN 3, 13

P

POS 6, 14
POSITION 6, 14
PUT 14

OPL

I N D E X 17

R

‘Record too large’ 10
records 2

bookmarks 14
moving between 6
saving 4, 14

ROLLBACK 13

T

tables
creating 12
field handles 12
field names 13
in a database 12
indexes 14
opening 13
SQL query 13
views on 13

TRAP 8

U

UPDATE 5
USE 8

W

wildcards
in data file search 6

	Contents
	Data file handling
	Files, records and fields
	Creating a data file
	Logical names
	Fields
	Opening a file
	Saving records
	The number of records
	How the values are saved
	Moving from record to record
	Deleting a record
	Finding a record
	Wildcards
	More controlled finding
	Changing/closing the current file
	Example - copies selected records from one file to another
	Closing a data file
	Keeping data files compressed
	Series 3c and Siena data files and the Data application

	Series 5 Database Handling
	The Series 5 Database Model
	Databases, tables, views, fields and field handles
	Creating databases and tables
	Logical names
	Fields
	Opening databases and tables
	Transactions
	Record position
	Saving records
	The number of records
	Closing views and databases
	Indexes
	Compaction
	Opening a database created by the Data application

	Index

