OPL

ERROR HANDLING

[0 Copyright Psion Computers PLC 1997

This manual is the copyrighted work of Psion Computers PLC, London, England.
The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks. Psion Series 5, Psion Series 3c, Psion Series 3a, Psion Series 3
and Psion Siena are trademarks of Psion Computers PLC.

EPOC32 and the EPOC32 logo are registered trademarks of Psion Software PLC.
O Copyright Psion Software PLC 1997

All trademarks are acknowledged.

OPL

CONTENTS

SYNTAX ERROIRS ittt ettt et ettt e et te ittt e eenens 1
PUNCTUATION ERRORS ...t ee e e e e e e e s s eee e s s e e s s seeeeseseseeeen e 1
STRUCTURE ERRORS ..o e e e ee e e s e e s s e e e s e et ee s eeseeees s seee s seeeseeen. 1
ERRORS IN RUNNING PROCEDUWURES ..o 2
ERROR HANDLING FUNCTIONS AND COMMANDS ... seeses s eesesneses 2
STRATEGY oottt e e e e ee s e s e eee s ee e e sees e ee s s seeseseeseseeeeessenees 3

TR AP ettt ettt ettt ettt et et ettt et ettt e, 3
EXAMPLE .o et e et e et e e e e e e e et s e e e e n e, 4
ERR, ERRS AND ERRXSG eeeeeeeteee ettt et ee ettt e et e e et e ee et e e e e e et eeee et eeee e eeaeeneane 4
EXAMPLE .o e e e e e e e e e e et e e e et e e e 4
TRAP INPUT/EDIT AND THE ESC KEY ettt eeeee et ee e e e st eeeese s e eeee s s seseeseseeens 5
ONERR...CONERR OFF .ot ettt et et e e e, 5
EXAMPLE ..o e e e e e e e e e s e e e e e e e et r e e e e ee e eeen. 6
WHEN TO USE ONERR OFF ..ot e e e e e ee s s s s eeee s s s eeeenseseeees 6
MULTIPLE ONERRS <.ttt ee e e e e ee e e eee s s s e e s e e eeee s sesesees s e e eeseseseesseeesenen. 7
TRAP AND ONERR ...t s e e et ee e et e e s e e s seeeee s eeseee s seseeeesseseeeeeseeees 7

R AISE <o ettt ettt ettt e e e e e e ee e 7
EXAMPLE .-ttt e e e e e et e e e e et e e e et e e e e e e e et e e e e e e e et eeee e eree e e ereeaeeeens 7

L] TRAP RAISE ERRY6 et ee e e e e e e e e e ee e s eeee e e e e e e s e seseeeeseseseesseeeseeeseeeeen 8
ERROR MES S A GES ..o et 8
FILE AND DEVICE ERRORS ..o e e s e eeese e e e eeeee s e e s eeeseeseseseeseseeseseeseseesaseeens 9
TRANSLATOR ERRORS ... e e s eeee e e s s s e e s s eees s s sees s eeeeseseeseeens 10
OPL SPECIFIC ERRORS ..o eee e et ee e e s e eee e e e e s e s e eese s e s seeseseeseeeeeseeeseeeeseeeeeeeen 11

(] SERIES 5 SPECIFIC ERRORS ...t ee e e e e e e s eeee s e e e e s s seeeessesees 12
1NN 1 = G RPR 13

(ERROR HANDLING ‘

OPL

SYNTAX ERRORS

Syntax errors are those which are reported when translating a procedure. (Other errors can occur while you're
running a program.) The OPL translator will return you to the line where the first syntax error is detected.

All programming languages are very particular about the way commands and functions are used, especially in
the way program statements are laid out. Below are a number of errors which are easy to make in OPL. The
incorrect statements are in bold and the correct versions are on the right.

PUNCTUATION ERRORS
Omitting the colon between statements on a multi-statement line:

Incorrect Correct
a$="text” PRINT a$ a$="text” :PRINT a$

Omitting the space before the colon between statements:

Incorrect Correct

a$=b% :PRINT a$ a$=b$:PRINT a$
Omitting the colon after a called procedure name:
Incorrect Correct

PROC procl: PROC proc1:
GLOBAL a,b,c GLOBAL a,b,c
proc2 proc2:

ENDP ENDP

Using only 1 colon after a label in GOTO/ONERR/VECTOR (instead of O or 2):

Incorrect Correct
GOTObelow: GOTO below
below:: below::

STRUCTURE ERRORS

The DO...UNTIL, WHILE...ENDWH and IF...ENDIF structures can produce a ‘Structure fault’ error if used
incorrectly:

e Mixing up the three structures - e.g. by using DO...WHILE instead of DO...UNTIL.
e Using BREAK or CONTINUE in the wrong place.
e Using ELSE IF with a space, instead of ELSEIF.

e VECTOR...ENDV can also produce a ‘Structure fault’ error if used incorrectly.

Attempting to nest any combination of these structures more than eight levels deep will produce a ‘Too
complex’ error.

CERROR HANDLING ‘

OPL

ERRORS IN RUNNING PROCEDURES

OPL may display an error message and stop a running program if certain ‘error’ conditions occur. This may
happen because:

* There is a mistake, dug, in your program, which could not be detected during translation - for example, a
calculation has involved a division by zero.

e A problem has occurred which prevents a command or function from working - for example, an APPEND
command may fail because a disk is full.

Unless you include statements which can handle such errors when they occur, OPL will use its own error
handling mechanism. The program will stop and an error message be displayed. The first line gives the names of
the procedure in which the error occurred, and the module this procedure is in. The second line is the ‘error
message’ - one of the messages listed at the end of this section. If appropriate, you will also see a list of variable
names or procedure names causing the error.

If you were editing the module with the Program editor and you ran it from there, you would also be taken back
to editing the OPL module, with the cursor at the line where the error occurred.

ERROR HANDLING FUNCTIONS AND COMMANDS

To prevent your program being stopped by OPL when an error occurs, include statements in your program
which anticipate possible errors and take appropriate action. The following error handling facilities are available
in OPL:

e TRAP temporarily suppresses OPL'’s error processing.
 ERR and ERR$ (and ERRX$ on the Series 5) find out what kind of error has occurred.
« ONERR establishes an error handler which can suppress OPL’s error processing over whole modules.

« RAISE can be used to simulate error conditions.

These facilities put you in control and must be used carefully.

CERROR HANDLING ‘

OPL

STRATEGY

You should design the error handling of a program in the same way as the program itself. OPL works best when
programs are built up from procedures, and you should design your error handling on the same basis. Each
procedure should normally contain its own local error handling:

Main procedure

PROC main:

PROC a:

& > \
Called procedures

PROC c:

o
v

U

P

o

O

o

Each procedure has its
own error handling
| statements shown as

The error handling statements can then be appropriate to the procedure. For example, a procedure which
performs a calculation would have one type of error handling, but another procedure which offers a set of
choices would have another.

TRAP

[] TRAP can be used with any of these commands: APPEND, BACK, CANCEL, CLOSE, COPY, CREATE,

DELETE, ERASE, EDIT, FIRST, gCLOSE, gCOPY, gFONT, gPATT, gSAVEBIT, gUNLOADFONT,
gUSE, INPUT, INSERT, LAST, LCLOSE, LOADM, LOPEN, MKDIR, MODIFY, NEXT, OPEN,
OPENR, POSITION, PUT, RAISE (see below), RENAME, RMDIR, UNLOADM, UPDATE and USE.

[] TRAP can be used with any of these commands: APPEND, BACK, CACHE, CLOSE, COMPRESS,

COPY, CREATE, DELETE, ERASE, EDIT, FIRST, gCLOSE, gCOPY, gFONT, gPATT, gSAVEBIT,
gUNLOADFONT, gUSE, INPUT, LAST, LCLOSE, LOADM, LOPEN, MKDIR, NEXT, OPEN, OPENR,
POSITION, RENAME, RMDIR, UNLOADM, UPDATE and USE.

The TRAP command immediately precedes any of these commands, separated from it by a space - for example:
TRAP INPUT a%

If an error occurs in the execution of the command, the program does not stop, and the next line of the program
executes as if there had been no error. Normally you would use ERR on the line after the TRAP to find out what
the error was.

CERROR HANDLING ‘

OPL

EXAMPLE

When INPUT is used without TRAP and a text string is entered when a number is required, the display just
scrolls up and & is shown, prompting for another entry. With TRAP in front of INPUT, you can handle bad
entries yourself:

PROC trapinp:
LOCAL profit%
DO
PRINT
PRINT “Enter profit”,
TRAP INPUT profit%

UNTIL ERR=0
PRINT “Valid number”
GET

ENDP

This example uses the ERR function, described next.

ERR, ERR$ AND ERRX$
When an error occurs in a program, check what number the error was, with the ERR function:
e%=ERR

If ERR returns zero, there was no error. The value returned by ERR is the number of the last error which
occurred it changes when a new error occurs. TRAP sets ERR to zero if no error occurred. Check the number it
returns against the error messages listed at the end of this section.

The ERR$ function gives you the message for error nuefier
e$=ERR$(e%)

You can also use ERR and ERRS$ together:
e$=ERR$(ERR)

This returns the error message for the most recent error.

[The ERRX$ function gives you the extended message for the current error:

e$=ERRX$

For example, ‘Error iMODULE\PROCEDUREEXTERNJIEXTERNZ..". This is the message which would
have been presented as an alert if the error had not been trapped. The use of this function gives the list of
missing externals and procedure names when an error has been trapped.

EXAMPLE
The lines below anticipate that error number -101 (‘File already open’) may occur. If it does, an appropriate
message is displayed.

TRAP OPEN “main”,A,a$

e%=ERR
IF e% REM Checks for an error
IF e%=-101
PRINT “File is already open!”
ELSE

CERROR HANDLING ‘

OPL

PRINT ERR$(€%)
ENDIF
ENDIF

The inner IF...ENDIF structure displays either the message in quotes if the error was number -101, or the
standard error message for any other error.

TRAP INPUT/EDIT AND THE ESC KEY

If in response to @RAP INPUT or TRAP EDIT statement, the Esc key is pressed while no text is on the input/
edit line, the ‘Escape key pressed’ error (number -114) will be raised. (This error will only be raised if the
INPUT or EDIT has been trapped. Otherwise, the Esc key still leaves you editing.)

You can use this feature to enable someone to press the Esc key to escape from editing or inputting a value. For
example:

PROC traplnp:
LOCAL a%,b%,c%
PRINT “Enter values.”
PRINT “Press Esc to exit”
PRINT “a% =", :TRAP INPUT a% :PRINT
IF ERR=-114 :GOTO end :ENDIF
PRINT “b% =", :TRAP INPUT b% :PRINT
IF ERR=-114 :GOTO end :ENDIF
PRINT “a%*b% =",a%*b%
PAUSE -40
RETURN
end::
PRINT :PRINT “OK, finishing...”
PAUSE -40
RETURN
ENDP

ONERR...ONERR OFF

ONERR sets up an error handler. This means that, whenever an error occurs in the procedure containing
ONERR, the program will jump to a specified label instead of stopping in the normal way. This error handler is
active until an ONERR OFF statement.

You specify the label after the word ONERR.

The label itself can then occur anywhere in the same procedure - even above the ONERR statement. After the
label should come the statements handling whatever error may have caused the program to jump there. For
example, you could just have the statenRRINT ERR$(ERR) to display the message for whatever error
occurred.

All statements after the ONERR command, including those in procedures called by the procedure containing the
ONERR, are protected by the ONERR, until the ONERR OFF instruction is given.

CERROR HANDLING ‘

OPL

EXAMPLE

PROC divO0:
ONERR errHand
PRINT 1/

EM cause divide by zero error -8

RETURN REM don't get to this line

errHand::

ONERR OFF

PRINT “Error:";err,err$(err)

IF ERR=-8
REM divide by zero error = -8
PRINT “Division by zero is illegal”

ENDIF

GET

ENDP

\ Statements protected

by ONERR

If an error occurs in the lines betwe®NERR errHand andONERR OFEthe program jumps to the label

errHand:: where a message is displayed.

Always cancel ONERR with ONERR OFF immediately after the label.

WHEN TO USE ONERR OFF

You could protect the whole of your program with a single ONERR. However, it's often easier to manage a set
of procedures which each have their own ONERR...ONERR OFF handlers, each covering their own procedure.
Secondly, an endless loop may occur if all errors feed back to the same single label.

For example, the diagram below shows how an error handler is left active by mistake. Two completely different
errors cause a jump to the same label, and cause an inappropriate explanatory message to be displayed. In this

example an endless loop is created becaese

PROC first:
ONERR label

PRINT “Log error”

PROC next:
PRINT 2/0
ONERR OFF

ENDP

is called repeatedly:

CERROR HANDLING ‘

OPL

You can have more than one ONERR in a procedure, but only the most recent ONERR is active. Any errors
cause a jump to the label for the most recent ONERR.

ONERR OFF disableall ONERRsin the current procedure. If there are ONERRSs iother procedures above
this proceduredalling proceduresthese ONERRS are not disabled.

TRAP has priority over ONERR. In other words, an error from a command used with TRAP will not cause a
jump to the error handler specified with ONERR.

The RAISE command generates an error, in the same way that OPL raises errors whenever it meets certain
conditions which it recognises as unacceptable (for example, when invalid arguments are passed to a function).
Once an error has been raised, either by OPL itself or by the RAISE command, the error-handling mechanism
currently in use takes effect - the program will stop and report a message, or if you've used ONERR the program
will jump to the ONERR label.

There are two reasons for using RAISE:

* You may want to mimic OPL’s error conditions in your own procedures. For example, if you create a new
procedure which performs a calculation and returns a value, you may want to RAISE an ‘Overflow’ or
‘Divide by zero’ error if unsuitable numbers are passed as parameters.

In this case, you would RAISE one of the standard error numbers. You could handle this yourself with
ONERR, or let OPL handle it in the normal way.

e OPL raises only a limited range of errors for general use, and you may want to raise new kinds of error
codes specific to your program or particular circumstances.
In this case, you would RAISE a new error number. With ONERR on, RAISE would go to the ONERR
label, where you would have code to interpret your new error numbers. You could then display appropriate
messages.
You can use any positive number (from 0 to 127) as a new error code. Do not use any of the numbers in the
list that follows.

You may also find RAISE useful for testing your error handling.

PROC main:

REM calling procedure

PRINT myfunc:(0.0) REM will raise error -2
ENDP

PROC myfunc:(x)
LOCAL s
REM returns 1/sqr(x)
s=SQR(X)
IF s=0
RAISE -2

(ERROR HANDLING | 7)

OPL

REM ‘Invalid arguments’
REM avoids ‘divide by zero’
ENDIF
RETURN (1/s)
ENDP

This uses RAISE to raise the ‘Invalid arguments’ error not the ‘Divide by zero’ error, since the former is the
more appropriate message.

[] TRAP RAISE ERR%

TRAP RAISE err% can be used to clear the TRAP flag and sets ERR vabkre%o. For example, using
err%=0 will clear ERR.

ERROR MESSAGES

These are the numbers of the errors which OPL can raise, and the message associated with them:

Number Message

-1 General failure

-2 Invalid arguments

-3 OIS error

-4 Service not supported

-5 Underflow (number too small)

-6 Overflow (number too large)

-7 Out of range

-8 Divide by zero

-9 In use (e.g. serial port being used by another program)
-10 No system memory

-11 Segment table full

-12 Semaphore table full

-13 Process table full/Too many processes
-14 Resource already open

-15 Resource not open

-16 Invalid image/device file

-17 No receiver

-18 Device table full

-19 File system not found (e.g. if you unplug cable to PC)
-20 Failed to start

-21 Font not loaded

CERROR HANDLING ‘

OPL

-22
-23
-24
-25

Too wide (dialogs)
Too many items (dialogs)
Batteries too low for digital audio

Batteries too low to write to Flash

FILE AND DEVICE ERRORS

File already exists

File does not exist

Write failed

Read failed

End of file (when you try to read past end of file)
Disk full

Invalid name

Access denied (e.g. to a protected file on PC)
File or device in use

Device does not exist

Directory does not exist

Record too large

Read only file

Invalid I/O request

I/O operation pending

Invalid volume (corrupt disk)

I/O cancelled

Disconnected

Connected

Too many retries

Line failure

Inactivity timeout

Incorrect parity

Serial frame (usually because Baud setting is wrong)
Serial overrun (usually because Handshaking is wrong)
Cannot connect to remote modem

Remote modem busy

No answer from remote modem

CERROR HANDLING ‘

OPL

-61 Number is black listed (you may try a number only a certain number of times; wait a while and try
again)

-62 Not ready

-63 Unknown media (corrupt SSD)

-64 Root directory full (on any device, the root directory has a maximum amount of memory allocated
to it)

-65 Write protected

-66 File is corrupt (Media is corrupt on Series 3c)

-67 User abandoned

-68 Erase pack failure

-69 Wrong file type

TRANSLATOR ERRORS

-70 Missing “

-71 String too long
-72 Unexpected name
-73 Name too long
-74 Logical device must be A-Z (A-D on Series 5)
-75 Bad field name
-76 Bad number

=77 Syntax error

-78 Illegal character
-79 Function argument error
-80 Type mismatch
-81 Missing label

-82 Duplicate name
-83 Declaration error
-84 Bad array size
-85 Structure fault

-86 Missing endp

-87 Syntax Error

-88 Mismatched (or)
-89 Bad field list

-90 Too complex

-91 Missing ,

CERROR HANDLING ‘

OPL

-92
-93
-94
-95

Variables too large
Bad assignment
Bad array index

Inconsistent procedure arguments

OPL SPECIFIC ERRORS

Illegal Opcode (corrupt module translate again)

Wrong number of arguments (to a function or parameters to a procedure)
Undefined externals (a variable has been encountered which hasn’t been declared)
Procedure not found

Field not found

File already open

File not open

Record too big (data file contains record too big for OPL)

Module already loaded (when trying to LOADM)

Maximum modules loaded (when trying to LOADM)

Module does not exist (when trying to LOADM)

Incompatible translator version (OPL file needs retranslation)

Module not loaded (when trying to UNLOADM)

Bad file type (data file header wrong or corrupt)

Type violation (passing wrong type to parameter)

Subscript or dimension error (out of range in array)

String too long

Device already open (when trying to LOPEN)

Escape key pressed

Incompatible runtime version

ODB file(s) not closed

Maximum drawables open (maximum 8 windows and/or bitmaps allowed)
Drawable not open

Invalid Window (window operation attempted on a bitmap)

Screen access denied (when run from Calculator)

CERROR HANDLING ‘

OPL

I:l SERIES 5 SPECIFIC ERRORS

-121 OPX not found

-122 Incompatible OPX version

-123 OPX procedure not found

-124 STOP used in callback from OPX

-125 Incompatible update mode

-126 In database transaction or started changing fields

[] constants for all error values are supplied in Const.oph. See the ‘Calling Procedures’ section of the

‘Basics.pdf’ document for details of how to use this file and Appendix E in the ‘Appends.pdf’ document
for a listing of it.

CERROR HANDLING ‘

OPL

INDEX

E

EDIT
with TRAP 5
ERR 4
ERRS$ 4
error handling
ERR, ERR$, ERRX$ 4
ONERR 5
overview 2
RAISE 7
TRAP 3
error messages
listed 8
with ERR, ERR$, ERRX$ 4
error numbers
listed 8
errors
common syntax 1
while running 2
ERRX$ 4
Esc key, in INPUT, EDIT 5

I
INPUT
with TRAP 5

O
ONERR 5

R
RAISE 7

S

‘Structure fault’ 1
‘Syntax error’ 1
.

TRAP 3
with INPUT,EDIT 5
TRAP RAISE 8

	Contents
	Syntax errors
	Punctuation errors
	Structure errors
	Errors in running procedures
	Error handling functions and commands
	Strategy
	TRAP
	Example

	ERR, ERR$ and ERRX$
	Example

	TRAP INPUT/EDIT and the Esc key
	ONERR...ONERR OFF
	Example

	When to use ONERR OFF
	Multiple ONERRs
	TRAP and ONERR
	RAISE
	Example

	Error messages
	File and device errors
	Translator errors
	OPL specific errors

	Index

